正誤表

このたびは、弊社刊『改訂版 世界一わかりやすい 京大の理系数学 合格講座』の記述につき誤りがございました。お詫びとともに訂正させて頂きます。

	ページ	誤	正
p.369	上から 8行目・9行目	$\left(-\frac{1}{\overline{\alpha}}\right)\overline{\left(-\frac{1}{\overline{\alpha}}\right)} - q\overline{\left(-\frac{1}{\overline{\alpha}}\right)}i + q\left(-\frac{1}{\overline{\alpha}}\right) - 1$ $= \left(-\frac{1}{\overline{\alpha}}\right)\left(-\frac{1}{\alpha}\right) - q\left(-\frac{1}{\alpha}\right)i + q\left(-\frac{1}{\overline{\alpha}}\right) - 1$ $= \frac{1 + q\overline{\alpha}i - q\alpha i - \alpha\overline{\alpha}}{\alpha\overline{\alpha}}$	$\left(-\frac{1}{\overline{\alpha}}\right)\overline{\left(-\frac{1}{\overline{\alpha}}\right)} - q\overline{\left(-\frac{1}{\overline{\alpha}}\right)}i + q\left(-\frac{1}{\overline{\alpha}}\right)i - 1$ $= \left(-\frac{1}{\overline{\alpha}}\right)\left(-\frac{1}{\alpha}\right) - q\left(-\frac{1}{\alpha}\right)i + q\left(-\frac{1}{\overline{\alpha}}\right)i - 1$ $= \frac{1 + q\overline{\alpha}i - q\alpha i - \alpha\overline{\alpha}}{\alpha\overline{\alpha}}$
p.399	「実行」部分の図	$ \begin{array}{c c} b \\ 1 \\ b = \frac{1}{4}(a-2)^2 \\ 0 \\ 1 \\ b = a - 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
p.472	下から3行目	OP=q, $OQ=q$, $OR=r$	OP=p, $OQ=q$, $OR=r$
p.528	上から4行目	$V = \int_{\frac{\pi}{8}}^{\frac{7\pi}{24}} \pi \sin^2 2x dx - \int_{\frac{\pi}{8}}^{\frac{7\pi}{24}} \pi \sin^2 \left(x + \frac{\pi}{8}\right) dx$ $= \frac{\pi}{2} \int_{\frac{\pi}{8}}^{\frac{7\pi}{24}} \left\{ (1 - \cos 4x) - \left(1 - \cos 2x \left(x + \frac{\pi}{8}\right)\right) \right\}$	$V = \int_{\frac{\pi}{8}}^{\frac{7\pi}{24}} \pi \sin^2 2x dx - \int_{\frac{\pi}{8}}^{\frac{7\pi}{24}} \pi \sin^2 \left(x + \frac{\pi}{8}\right) dx$ $= \frac{\pi}{2} \int_{\frac{\pi}{8}}^{\frac{7\pi}{24}} \left\{ (1 - \cos 4x) - \left(1 - \cos 2x \left(x + \frac{\pi}{8}\right)\right) \right\} dx$
p.550	実行の1行目	$f(x) = x^2 + ax + b$ を $f(x^3) = x^6 + ax^3 + b$ で割ると、余りは	$f(x) = x^2 + ax + b$ で $f(x^3) = x^6 + ax^3 + b$ を割ると、余りは