『佐々木隆宏の 数学 I 「データの分析」が面白いほどわかる本』 正誤表

このたびは弊社刊**『佐々木隆宏の 数学 I 「データの分析」が面白いほどわかる本』**第1刷(2013 年 7 月 25 日発行)の記述につき誤りがありました。お詫びとともに訂正させていただきます。

最終更新日:2016年11月21日

ページ	行目	誤	正
32	上から5行目	ホームルームでもで出てきましたし、	ホームルームでも出てきましたし、
58	ササタカ☆COMMENT4 下から2行目	階級③の階級値 157. 2cm	階級③の階級値 157. <mark>5</mark> cm
95	左側のグラフ	[国語の結果]	[英語の結果]
106	「分散と標準偏差の定義式」 2つ目の項目 標準偏差	$(x_1 - \mathbf{x})^2, (x_2 - \mathbf{x})^2, (x_3 - \mathbf{x})^2, \dots, (x_n - \mathbf{x})^2$	$(x_1 - \bar{x})^2$, $(x_2 - \bar{x})^2$, $(x_3 - \bar{x})^2$,, $(x_n - \bar{x})^2$
108	囲みの中にあるグラフ	単峰性の分布、多峰性の分布のそれぞれの柱上グラ	フを、隙間がないようなグラフにする
110	問題文1行目	1年生10人に数学の小テストを	1年生10人に10点満点の数学の小テストを
111	解答(3) 最後の行	$s_x = \sqrt{9} = 3$	$s_{x} = \sqrt{9.2} = 3.03 \dots = 3$
122	1 行目	物理の点数も高く,	理科の点数も高く,
127	問題(2)のグラフ 横軸のラベル	平均勉強時間	平均学習時間
138	解答[散布図 B]	相関係数は 0	相関係数は 0.1

185	最終行 分母の第2項目	$\sqrt{\sum_{i=1}^{n}(y_i-y)^2}$	$\sqrt{\sum_{i=1}^{n}(y_i-\bar{\mathbf{y}})^2}$
193	[コ〜ソ]の解説 B の答え	=16	=16.00
198	問(5)9行目 分散の式	$s_{w}^{2} = \frac{(w_{1} - \overline{w})^{2} + (w_{2} - \overline{w})^{2} + (w_{10} - \overline{w})^{2}}{10}$	$s_{w}^{2} = \frac{(w_{1} - \overline{w})^{2} + (w_{2} - \overline{w})^{2} + \dots + (w_{10} - \overline{w})^{2}}{10}$
206	下から2行目	$\frac{30^2 + (y_2 - 16.3)^2 + \dots + (y_{12} - 16.3)^2}{12} - 16.3^2$	$\frac{30^2 + y_2^2 + y_3^2 + \dots + y_{12}^2}{12} - 16.3^2$
206	下から1行目	$\frac{18^2 + (y_2 - 16.3)^2 + \dots + (y_{12} - 16.3)^2}{12} - 15.3^2$	$\frac{18^2 + y_2^2 + y_3^2 + \dots + y_{12}^2}{12} - 15.3^2$
224	下から2行目 分子の第1項目	$m(m+m)s_1^2$	$m(m+n)s_1^2$

以上