
京大数学問題集　解答篇

［参考］

n3 − 7n+ 9が 3の倍数

をいう部分は「連続３整数の積」を利用して，以下のように変

形してもよい。

(n3 − n)− 3(2n− 3)

= (n− 1)n(n+ 1)− 3(2n− 3)

よって，前半の項は連続 3整数の積，後半の項は 3の倍数なの

で，与式は 3の倍数。

理系第 ３ 問
［問題］ （35点）

　 ωは 0 < ω ! π

2
を満たす定数とし，四角形 ABCDに関す

る次の 2つの条件を考える。

ⅰ 　四角形 ABCDは半径 1の円に内接する。

ⅱ 　 ∠ABC = ∠DAB = ω.

　条件ⅰとⅱを満たす四角形のなかで，4辺の長さの積

k = AB · BC · CD ·DA

が最大となるものについて，k の値を求めよ。

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

［解答の概略］

　 図を描いてみれば 1変数で図が決まるので，次元量 1の問題であ
る。
あとは，各辺の長さを求めるのに，角度があればよいので，適当
な角をおいて，4辺の長さを表せばよい。

k = 16 sin ω sin(2α− ω) sin2(α− ω)

と求まった後は，三角関数の最大・最小なので，
変数を一箇所にまとめる

ことを意識して変形するとよい。α は定数，ω が変数であること
に注意。
このとき，むやみに加法定理で展開をしてしまうのではなく，ま
ずは次数を下げる方向で式変形を考えてみること。
前半 2項を見れば，和積公式から，2α− 2ω と ω が一方にまとま
ること，後半の項は半角公式から，中身が 2α− 2ω となることが
見えれば，［解答］のような変形が見えてくる。
cos(2α− 2ω)のカタマリを

✿✿✿✿✿✿✿✿✿✿
置換したら ，

✿✿✿✿✿✿✿✿
変域を確認

✿
するのを

忘れないこと。

k = −4(X − 1)(X − cos 2α)

はただの 2 次関数なので，軸が区間内かどうかで判断すれば
よい。

［解答］

ⅱより，

∠ABC = ∠DAB = ω

四角形 ABCDは内接四角形なので，

∠ADC = ∠BCD = π − ω

よって，四角形ABCDは等脚台形なので，次の図のようになる。
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よって，∠CAD = θ とおくと，

∠CAB = ω− θ

↘ABCにおいて，内角の和は π なので，

∠ACB = π − 2ω+ θ

また AB//CDだから，錯角が等しく，

∠DCA = ω− θ

よって，↘ABC, ↘ACDで正弦定理を用いて，

AB

sin(π − 2ω+ θ)
=

BC

sin(ω− θ)
= 2

CD

sin θ
=

AD

sin(ω− θ)
= 2

∴ AB = 2 sin(2ω− θ), BC = 2 sin(ω− θ)

CD = 2 sin θ, DA = 2 sin(ω− θ)

したがって，

k = 16 sin θ sin(2ω− θ) sin2(ω− θ)

= 4{− cos 2ω+ cos(2ω− 2θ)}{1− cos(2ω− 2θ)}

ここで，X = cos(2ω− 2θ)とおくと，

k = −4(X − cos 2ω)(X − 1)

= −4

(
X − 1 + cos 2ω

2

)2

+ (1− cos 2ω)2

0 < θ < ωに注意すると，

0 < 2ω− 2θ < 2ω ! π

よって，この区間において cosは単調減少なので，

1 > X > cos 2ω

軸位置 X =
1 + cos 2ω

2
はこの区間内に入っているので，最大

値は，

(1− cos 2ω)2 = 4 sin 4α

《採点基準》

• 　 k を 1変数で表して 10点

• 　変域を正しくとれて 5点

• 　
✿✿✿✿✿✿✿✿✿
区間内での最大値を与える場所を議論できて 10点

• 　答えに 10点

［解説］

図形量の最大・最小問題である。

　［図形量の最大・最小］
　　図形量の最大・最小問題を扱うときは，

① 　図を描いて，何変数で図形が決まるのかを確認。
➡次元量　

② 　対象となる図形量を求めるのに必要な変数をおく。
（変数設定は，長さ・角度が一般的）
③ 　変数をおいたら，変域を確認。
④ 　最後に，何個変数をおいても構わないが，

（次元量）=（おいた変数の個数）−（等式条件の個数）

に従って，等式条件を求める。

上のように扱うのが基本。変数設定の際は，困ったら角度を優

先しておいておけば，正弦・余弦定理から長さは求まることに

注意する。

因みに，今回は円に内接する四角形でⅱを満たすものは，等脚

台形に限られる。したがって，これで外接円の存在は特に意識

せず扱えるので，［解答］のように変数を設定したが，外接円の

意識が強く残っていた場合は，各頂点と外心を結び，中心角を

変数に取った人も多かったのではないだろうか。この場合は場

合分けが生じるので注意すること。

［別解：中心角を変数に］

ⅱより，

∠ABC = ∠DAB = ω

四角形 ABCDは内接四角形なので，

∠ADC = ∠BCD = π − ω

よって，四角形 ABCDは等脚台形である。

ⅰ 　 ω >
π

4
のとき · · ·（＊）：

⒜ 　外接円の中心が四角形の内部にあるとき：

円の中心を Oとして，∠AOD = 2θ とおくと，↘AODが

二等辺三角形なので，

∠OAD = ∠ODA =
π

2
− θ
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よって，∠DAB = ω, ∠ADC = π − ωに注意して，

∠OAB = ω+ θ − π

2
, ∠ODC =

π

2
+ θ − ω

A B

CD

O

ω

2θ

したがって，

∠AOB = 2π − 2ω− 2θ, ∠DOC = 2ω− 2θ

等脚台形であることに注意して，∠BOC = 2θとなるから，

AB = 2 sin(π − ω− θ) = 2 sin(ω+ θ)

BC = 2 sin θ

CD = 2 sin(ω− θ), AD = 2 sin θ

また，変域について，

0 < ∠AOB, ∠BOC, ∠COD, ∠DOA < π

∴ π

2
−ω < θ < π−ω, 0 < θ <

π

2
, ω− π

2
< θ < ω

0 < ω ! π

2
に注意すれば，

π

2
− ω < θ < ω

※これが起こるのは，
π

2
− ω < ωのときで，ω >

π

4
に限

られる。

したがって，

k = 16 sin2 θ sin(ω− θ) sin(ω+ θ)

= −8 sin2 θ(cos 2ω− cos 2θ)

= −4(cos 2θ − 1)(cos 2θ − cos 2ω)

(0 !) π − 2ω < 2θ < 2ω (! π)なので，

cos 2ω < cos 2θ < cos(π − 2ω) (= − cos 2ω)

に注意して，k を cos 2θ の 2次関数と見ると，軸位置は

cos 2θ =
1 + cos 2ω

2

ω >
π

4
より，cos 2ω < 0 に注意すると，cos 2ω <

1 + cos 2ω

2
なので，

A 　
1 + cos 2ω

2
< − cos 2ω ⇔ cos 2ω < − 1

3
のとき：

cos 2θ =
1 + cos 2ω

2

で最大値をとる。

B 　 − 1

3
! cos 2ω (< 0)のとき：

軸位置は区間の右側にあるので，k は cos 2θ の単調増

加で，

k < −8 cos 2ω(cos 2ω+ 1)

⒝ 　外接円の中心が四角形の周上または外部にあるとき：

A B

CD

O

ω

2θ

∠AOD = 2θ とおいて，上と同様に考えると，

∠AOB = 2θ + 2ω, ∠BOC = 2θ, ∠COD = 2ω− 2θ

よって，

AB = 2 sin(θ + ω), BC = 2 sin θ,

CD = 2 sin(ω− θ), DA = 2 sin θ

一方変域に関しては，ω >
π

4
で考えていることに注意す

れば，

0 < θ ! π

2
− ω

k = 16 sin2 θ sin(θ + ω) sin(ω− θ)

= −8 sin2 θ(cosω− cos θ)

= −4(cos 2θ − 1)(cos 2θ − cos 2ω)

この場合も − cos 2ω ! cos 2θ < 1なので，

A 　
1 + cos 2ω

2
< − cos 2ω ⇔ cos 2ω < − 1

3
のとき：

軸位置は区間の右側にあるので，k は cos 2θ の単調減

少で，

k < −8 cos 2ω(cos 2ω+ 1)

B 　 − 1

3
! cos 2ω (< 0)のとき：

cos 2θ =
1 + cos 2ω

2

で最大値をとる。
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(1− cos 2ω)2 + 8 cos 2ω(1 + cos 2ω)

= (3 cos 2ω+ 1)2 % 0

であり，以上⒜⒝から，A, Bの場合いずれも，最大値は

(1− cos 2ω)2 である。

ⅱ 　 0 < ω ! π

4
のとき：

これはⅰの⒝の場合しか考えなくてよい。また，変域に関

しては，ω ! π

2
− ωとなるので，

0 < θ ! ω　　　 ∴ cos 2ω ! cos 2θ < 1

やはり軸位置は区間内にあり，最大値は (1 − cos 2ω)2 と

なる。

以上から，求める最大値は (1− cos 2α)2 = 4sin 4αとなる。

［別解注意１］

別解ⅰの（＊）の場合分けについては，解答中「※」の変域から

出てきていることに注意する。θ が存在する条件としてこの場

合分けが必要となる。

つまり，

ⅰ 　
π

4
< ω <

π

2
のとき：

「外心が四角形の内部・外心が四角形の周上または外

部」それぞれの最大値の
✿✿✿✿✿✿✿✿
大きい方が最大値

ⅱ 　 0 < ω ! π

4
のとき：

「外心が四角形の周上または外部のとき」のみ考えて最

大値

と考えている。今回はⅰⅱの最大値が一致したので，ω で場合

分けする必要なく答えているが，一致しなければ，ω で場合分

けをして答える必要がある。

［別解注意２］

上のようにそれぞれ動かすと状況が見えづらくて仕方ない。⒜

, ⒝（Oが四角形の内部・外部）のいずれの場合も

k = −4(cos 2θ − 1)(cos 2θ − cos 2ω)

となることから，⒜, ⒝の変域をまとめて，これを 0 < θ < ω

で動かすのが現実的である。

［別解参考］

今回は，「中心角」を考えるために，外心が四角形の内部か周上

または外部かで場合分けをしたが，中心角ではなく，座標を設

定してしまえば，こういった場合分けは必要ない。

この場合は，例えば A(cos θ, sin θ)とおくと，

B A

DC

ω

上図のようになり，錯角は等しいので，

∠OAD = ω+ θ

よって，∠AOD = π − 2(ω+ θ)だから，Dの偏角は，

θ + π − 2(ω+ θ) = π − θ − 2ω

（※これが θ < 0でも成立する）

よって，D(− cos(θ + 2ω), sin(θ + 2ω))となる。

等脚台形に注意すれば，

B(− cos θ, sin θ), C(cos(θ + 2ω), sin(θ + 2ω))

となる。一方，θ の変域に関しては，

− π

2
< θ < π − θ − 2ω <

π

2

となるので，
π

2
− 2ω < θ <

π

2
− ω

で考えればよい。

［参考］

内接四角形の対辺の積　➡　トレミーの定理

という発想があれば，以下のように幾何的に処理することもで

きる。

∵©　四角形 ABCDは半径 1の円に内接し，

∠ABC = ∠DAB = ω

より，↘ABC, ↘DABにおいて正弦定理から，

AC = BD = 2 sinω

ここで，四角形 ABCD は内接四角形だから，トレミーの定理

より，

AB · CD+DA · BC = AC · BD (= 4 sin2 ω) · · ·①
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ここで，AB · CD, DA · BC > 0だから，相加・相乗平均の関

係から，

AB · CD+DA · BC % 2
√
AB · BC · CD ·DA

①から，

4 sin2 ω % 2
√
AB · BC · CD ·DA

∴ AB · BC · CD ·DA ! 4 sin4 ω

ここで，等号が成立するのは

AB · CD = BC ·DA = 2 sin2 ω

のときである。

ここで，CD → 0 のとき，四角形 ABCD は二等辺三角形

ABC (= ↘ABD)に近づき，このとき

BC ·DA → 2 sinω× 2 sinω = 4 sin2 ω

一方，B, Cが同一点に近づくとき，

BC ·DA → 0

BC · DA はこの間を連続的に変化し，2 sin2 ω < 4 sin2 ω に注

意すれば，

AB · CD = BC ·DA = 2 sin2 ω

となる四角形 ABCD は確かに存在する。よって，最大値は

4 sin 4α

理系第 ４ 問
［問題］ （35点）

　コインを n回投げて複素数 z1, z2, · · · , zn を次のように定

める。

ⅰ 　 1回目に表が出れば z1 =
−1 +

√
3 i

2
とし，裏が出れば

z1 = 1とする。

ⅱ 　 k = 2, 3, · · · , n のとき，k 回目に表が出れば zk =
−1 +

√
3 i

2
zk→1 とし，裏が出れば zk = zk→1 とする。た

だし，zk→1 は zk→1 の共役複素数である。

このとき，zn = 1となる確率を求めよ。

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

［解答の概略］

　 確率の問題だが，zn から zn+1 への推移が与えられているので，
漸化式を立てることを考えてみるとよい。確率の漸化式を考える
ときは，

最初か最後に注目する
のが基本。今回は最後に注目してみれば，n 回コインを投げた後
に起こりえる状態が，

zn = 1, ω, ω

と限定されるので，これらに数列をおいて，推移図を描けばよい。
このとき，

確率の和= 1

を忘れないようにすること。

［解答］

ω =
−1 +

√
3 i

2
とおく。

zn が 1, ω, ω のいずれかとすると，

zn+1 = ωzn, zn

なので，zn+1 は 1, ω, ω のいずれかとなる。

z1 が 1, ω のいずれかであることと合わせて，帰納的に zn は

1, ω, ω のいずれか。よって，

zn = 1, ω, ω

となる確率をそれぞれ pn, qn, rn とおく。

ωω = 1, ω2 = ω

に注意すれば，推移図は以下のようになる。

rn

qn

pn

rn+1

qn+1

pn+1

確率
1

2

確率 1
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